On using multiple imputation for exploratory factor analysis of incomplete data
نویسندگان
چکیده
منابع مشابه
Multiple imputation and analysis for high‐dimensional incomplete proteomics data
Multivariable analysis of proteomics data using standard statistical models is hindered by the presence of incomplete data. We faced this issue in a nested case-control study of 135 incident cases of myocardial infarction and 135 pair-matched controls from the Framingham Heart Study Offspring cohort. Plasma protein markers (K = 861) were measured on the case-control pairs (N = 135), and the maj...
متن کاملHandling Incomplete High Dimensional Multivariate Longitudinal Data by Multiple Imputation Using a Longitudinal Factor Analysis Model
1. Introduction Longitudinal data sets often suffer from missing values. Because of the large number of variables in these data sets, even a small rate of missingness on some variables can result in a large number of incomplete cases. Multiple imputation (Rubin, 1996, Rubin and Schenker, 1986) is often used to handle missing data problems. When producing multiple imputations for the missing val...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولMultiple Imputation for Incomplete Data With Semicontinuous Variables
We consider the application of multiple imputation to data containing not only partially missing categorical and continuous variables, but also partially missing ‘semicontinuous’ variables (variables that take on a single discrete value with positive probability but are otherwise continuously distributed). As an imputation model for data sets of this type, we introduce an extension of the stand...
متن کاملA functional multiple imputation approach to incomplete longitudinal data.
In designed longitudinal studies, information from the same set of subjects are collected repeatedly over time. The longitudinal measurements are often subject to missing data which impose an analytic challenge. We propose a functional multiple imputation approach modeling longitudinal response profiles as smooth curves of time under a functional mixed effects model. We develop a Gibbs sampling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Behavior Research Methods
سال: 2018
ISSN: 1554-3528
DOI: 10.3758/s13428-017-1000-9